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Optical Kerr frequency combs (KFCs) are an increasingly important optical metrology tool with
applications ranging from ultraprecise spectroscopy to time keeping. KFCs may be generated in compact
resonators with extremely high quality factors. Here, we show that the same features that lead to high
quality frequency combs in these resonators also lead to an enhancement of nonlinear emissions that may
be identified as originating from the presence of a negative frequency (NF) component in the optical
spectrum. While the negative frequency component of the spectrum is naturally always present in the real-
valued optical field, it is not included in the principal theoretical model used to model nonlinear cavities,
i.e., the Lugiato-Lefever equation. We therefore extend these equations in order to include the contribution
of NF components and show that the predicted emissions may be studied analytically, in excellent
agreement with full numerical simulations. These results are of importance for a variety of fields, such as
Bose-Einstein condensates, mode-locked lasers, nonlinear plasmonics, and polaritonics.
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Introduction.—Kerr frequency combs (KFCs), i.e., light
sources with a large number of highly resolved and nearly
equidistant spectral lines, have been attracting a consid-
erable interest in recent years, due to their important
applications in metrology, optical clocks, precision spec-
troscopy, precision time and distance measurements, and
attosecond pulse generation, to name just a few applications
[1–3]. Physical systems that are able to generate KFCs are
microring resonators, microtoroids, crystalline resonators,
microspheres, photonic-crystal cavities, and optical fiber
loops [1]. Microring resonators are particularly important in
this respect, since they are small-size, low-loss, CMOS-
compatible and power efficient devices that can be made of
different nonlinear materials and are therefore ideal for on-
chip KFC generation.
The main ingredients for efficient KFC formation have

been identified to be four-wave mixing and temporal cavity
soliton (CS) generation [2]. There is currently intense
research activity aiming to maximize the spectral extent
of the comb and its coherence, and to understand the
experimentally obtained spectra from first principles.
Because of the extremely complex dynamical behavior
and stability properties of the propagating CSs and patterns
in the resonators, intense theoretical activity related to the
mathematical properties of the traditionally used averaged
propagation equation, called the temporal Lugiato-Lefever
equation (LLE), has developed over the past years, with a
frequent display of new and surprising results [3–7].
One of the major dynamical effects in the propagation

of ultrashort pulses is the radiation emitted by solitons
due to higher-order dispersion effects, also called resonant
radiation (RR) [8–11]. This radiation, which appears
when pumping near the zero-dispersion point of the

structure, is very visible in experiments performed with
optical fibers and it also plays a central role in the dynamics
of CSs [6,12–14]. Indeed, it has been shown experimentally
that CSs emit RR in microring resonators and fiber loops
[14–16].
In this Letter we show how negative frequency (NF)

effects [17,18] are enhanced in optical microcavities and
lead to significant emissions in optical KFCs. We expect
the signatures of this process to be already present in
existing experimental data, and that future experiments will
be able to clearly identify these effects, thus providing an
additional tool for the investigation of the fundamental
properties of light propagation. In order to do this, we
extend the temporal LLE in order to take into account the
effects of negative frequencies and conjugate fields on the
propagation of CSs in optical resonators ( extended LLE, or
eLLE for brevity). We show that due to the forced and
dissipative nature of the eLLE, the new resonant radiations,
which are typically remarkably feeble in conventional
optical fibers and bulk materials, can become quite strong
and can be more efficiently generated. This surprising
result has the potential to impact considerably the for-
mation of KFCs due to CSs and also the intrinsic stability
of the homogeneous steady state continuous wave (cw)
solutions of the cavity.
Extended temporal Lugiato-Lefever equation—The start-

ing point of any discussion on optical resonators and
cavities is the infinite-dimensional Ikeda map [19,20]

Anþ1ð0; tÞ ¼ TAinðtÞ þ Re−iϕ0AnðL; tÞ; ð1Þ

i∂zAn þ i
αi
2
An þ D̂ði∂tÞAn þ Ŝði∂tÞpnl½An� ¼ 0: ð2Þ
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Here, Ain is the envelope of the (impulsed or cw) pump
field, T is the transmission coefficient at the coupling point
z ¼ 0, R is the reflection coefficient (R2 þ T2 ¼ 1), ϕ0 ¼
δ0 − 2πm is the phase accumulated over a round-trip, δ0 is
the cavity detuning, L is the length of the cavity, Anðz; tÞ
is the envelope of the intracavity field circulating at the
nth step, z is the spatial coordinate along the cavity, t is
the “fast” time variable in the reference frame moving
at the group velocity 1=β1, D̂ði∂tÞ≡P

j≥2βjði∂tÞj=j! is

the dispersion operator, βj ≡ ½∂j
ωβðωÞ�ω¼ω0

is the jth
dispersion coefficient calculated at the pump frequency
ω0, and Ŝði∂tÞ≡ ð1þ iω−1

0 ∂tÞ is the shock operator
describing the first order correction due to the frequency
dependent nonlinearity.
The Ikeda map of Eqs. (1) and (2) is usually based on the

slowly varying envelope approximation (SVEA), under
which the spectral extent of the pulse must be much smaller
than its central frequency. In Eq. (2), pnl is the nonlinear
polarization of the intracavity field, which in the presence
of the Kerr effect alone can be written as pnl½An� ¼
γjAnj2An, where γ is the nonlinear coefficient of the
material. However, in order to include in a physically
consistent way the higher-order effects such as third-
harmonic generation (THG) and the contribution of con-
jugate terms, one can use the so-called analytic signal
representation for all the fields involved in Eqs. (1) and (2).
This formulation completely avoids the use of the SVEA in
the equations, conserves energy even in presence of THG,
and can treat pulses of arbitrary durations. In such a way,
the contribution of the negative frequency components of
the pulse are fully taken into account, and this allows us
to describe the nonlinear dynamics of the full-field non-
linear forward Maxwell equations. We refer the reader to
Refs. [18,21,22] for an in-depth discussion.
The analytic signal of the nonlinear polarization is

written as [18,21,22]

pnl½An� ¼ γ

�

jAnj2An þ jAnj2A�
ne2iϕðz;tÞ þ

1

3
A3
ne−2iϕðz;tÞ

�

þ
;

ð3Þ

where ϕðz; tÞ≡ ω0tþ Δkz, and Δk≡ ðβ1ω0 − β0Þ is a
factor, crucial for the efficient phase matching of the
resonant negative-frequency terms, that measures the dif-
ference between the phase and the group velocity in the
medium. The subscriptþ in Eq. (3) signifies the filtering of
the negative frequency components out of the polarization.
This ensures that during its evolution Anðz; tÞ only contains
positive frequencies, and it is thus consistent with its own
definition. The first term in Eq. (3) is the usual Kerr term,
the second is the so-called “negative Kerr” (NK) term,
while the third gives THG. Note that the NK and THG
terms must appear together in order to preserve the
Hamiltonian nature of the four-wave mixing interaction,

something that was overlooked prior to our theoretical
work on the subject [18].
Equations (1) and (2) can be made more tractable by now

following the same Lugiato-Lefever approach [23]. To this
aim, we now plug Eq. (3) into Eq. (2), and we follow the
averaging procedure described in Ref. [20], using the
“cavity soliton units” ξ≡ z=LD2, τ≡ t=t0, Ω≡ ω0t0,
κ ≡ ΔkLD2, ψ ≡ A=

ffiffiffiffiffiffi
P0

p
, and P0 ≡ ðγLD2Þ−1 (so that

LNL ≡ ½γP0�−1 ¼ LD2), ψ in ≡ Ain=
ffiffiffiffiffiffi
P0

p
, and ϕðξ; τÞ≡

Ωτ þ κξ. A natural value for the time scale t0 is the typical
single-CS duration t0 ¼ ½jβ2jL=ð2δ0Þ�1=2. In the averaging
procedure, the cavity length L must be much smaller than
the dispersive and nonlinear lengths LD2 and LNL, respec-
tively. This ensures that the intracavity pulse does not
change much during a single round-trip. This slow varia-
tion must also be satisfied by the NK and THG terms in
Eq. (3): the phase ϕðz; tÞ must rotate very rapidly over a
single round-trip, so that the average effect is mediated
almost to zero, resulting in the condition κ ≫ 1.
In this way, we arrive at the following eLLE:

i∂ξψþ D̂ði∂τÞψþ iðΓþ iδÞψþð1þ iΩ−1∂τÞ

×

�

jψ j2ψþjψ j2ψ�e2iϕðξ;τÞ þ1

3
ψ3e−2iϕðξ;τÞ

�

þ
− iμψ in¼ 0:

ð4Þ

Γ≡ ½ðαiLþ T2Þ=2�LD2=L, δ≡ δ0LD2=L, μ≡ TLD2=L,
D̂ði∂τÞ≡P

n≥2bnði∂τÞn, where bn ≡ βn=ðn!tn−20 jβ2jÞ are
the dimensionless dispersion coefficients, and ϕðξ; τÞ≡
Ωτ þ κξ.
Equation (4) is the central result of this Letter. It can be

applied to any kind of optical resonator, and can be easily
extended to include the Raman effect or any other pertur-
bation of the nonlinear Schrödinger equation (NLS).
Phase matching conditions for the new radiations.—We

now derive the phase-matching conditions for the most
important resonant radiations emitted by the ultrashort CSs
propagating in the resonator. In Eq. (4), we substitute the
ansatz ψðτ; tÞ ¼ ψ0 þ gðξ; τÞ, and linearize with respect to
the small radiation field g. Note that due to the loss term
proportional to Γ in Eq. (4), far from the central peak of the
CS the resonant radiations decay asymptotically towards
the complex cw background ψ0. We use the perturbation
method employed in Ref. [18] in the fiber-optics or bulk
context, obtaining

DðΔÞ − vΔ ¼ D0; ð5Þ

DðΔÞ − vΔ ¼ D0 � 2κ; ð6Þ

where Δ is the dimensionless frequency detuning from the
pump, DðΔÞ≡P

n≥2bnΔn is the dispersion of the linear
waves, D0 ≡ δ − iΓ − 2jψ0j2 is the complex nonlinear
wave number, and v is the velocity parameter of the
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resulting moving CS, which starts to drift as a consequence
of the higher-order dispersion [12]. Equation (5) is con-
nected to the emission of the conventional RR, routinely
observed in fibers and cavities [10,11,14]. Equations (6)
phase match the negative frequency resonant radiation
[NRR, “þ” sign in Eq. (6)], which is due to the NK term
in Eq. (3), and the third-harmonic resonant radiation
[THRR, “−” sign in Eq. (6)], which is due to the THG
term in Eq. (3). Note that in all physically relevant
situations κ ≫ jD0j, jvΔj. The roots of Eqs. (5) and (6)
have real and imaginary parts, indicating the frequency
detuning of the emissions and their decay rate towards the
soliton background, respectively. Equation (5) is valid only
in the presence of propagating CSs, while Eqs. (6) holds
also for a pure cw intracavity field. This latter phase-
matching equation implies that the usual stable branch of
the stationary solutions of Eq. (4), i.e., the smallest root of
the equation iðΓþ iδÞψ þ jψ j2ψ − iμψ in ¼ 0 (see also
Refs. [24,25]), is unstable in the presence of the NK and
THG terms, and sidebands will appear. These emissions,
which are not present in the traditional temporal LLE, are a
new feature of our eLLE model.
Numerical simulations.—We illustrate the spectral

dynamics and the emission of the resonant radiations
from ultrashort CSs as seen in the previous section by
using a highly nonlinear, small, low-loss resonator (e.g., a
microtoroid or a microring, similar to those described in
Refs. [1,2], see alsoFig. 1).We take a radius r¼30μm, cavity
length L¼1.88×10−4m, pump wavelength λ0¼1.55μm,
β2 ¼ −90 ps2=km, β3 ¼ −1.11 ps3=km, nonlinear coeffi-
cient γ ¼ 1 W−1 m−1, group index at the pump ng ¼ 1.5, cw
pump power Pin ¼ 265 mW, transmission coefficient
T ¼ 0.07, detuning from the cavity resonance δ0 ¼
0.0115 ≪ π, free spectral range FSR ¼ 1060 GHz,
round-trip time tR ¼ 1=FSR ¼ 150 fs, photon lifetime
tph ≃ 0.19 ns, finesse F ≃ 628, and loaded Q factor

Q ∼ 105. The typical temporal width of the CSs formed
in the cavity is t0 ¼ ½jβ2jL=ð2δ0Þ�1=2 ≃ 27 fs, and we take
this value for the scaling of Eq. (4). The typical peak power
of the CS is also given by the soliton power scale
P0 ¼ 2δ0ðLD2=LÞ ¼ ½γLD2�−1 ≃ 122 W. The second order
dispersion length is LD2 ¼ 8.2 mm, which gives a ratio
LD2=L≃ 43.5 ≫ 1, making the averaging procedure
meaningful. We take Δk ∼ 0.67 × 104 m−1, an order of
magnitude that is common for solid media. With these
parameters, the dimensionless coefficients in Eq. (4)
become Γ ¼ 0.217, δ ¼ 0.5, μ ¼ 3, ψ in ¼ 0.047,
b2 ¼ �0.5, b3 ¼ −0.0758, Ω ¼ 33, and κ ≃ 54.5.
Figure 2(a) shows the output spectrum of the propaga-

tion (ξ ¼ 27, equivalent to 1200 cavity round-trips) of the
lower-branch homogeneous steady state (HSS) cw solution
(see Refs. [24,25]) in both anomalous and normal dis-
persions, respectively (b2 ¼ �0.5), by using the eLLE (4),
when b3 ¼ 0. As discussed in the previous section, for
these parameters the HSS solution is stable in the absence
of the NK and THG terms. Conversely, accounting for the
complex conjugate fields leads to far-detuned sidebands
(indicated by P1 and P2 in the figure) according to the
phase-matching conditions of Eq. (6), which grow very
quickly after four to five round-trips (ξ≃ 0.1, i.e., ∼80 μm)
and then perfectly stabilize. Note that these new emissions
appear irrespective of the sign of b2, due to the � sign in
Eq. (6). Moreover, the sidebands would be perfectly
symmetric with respect to the pump frequency for vanish-
ing higher-order dispersion terms, but become asymmetric
when the contribution of bn≥3 is important, see Fig. 2(b),
showing that this process is not due to conventional Kerr
four-wave mixing. In this case, the two peaks are always
slightly unbalanced in amplitude due to the presence of

r

Pin

Pout
T

R

cavity soliton

FIG. 1 (color online). Sketch of the generic microcavity and its
parameters. r is the ring radius, Pin is the cw input power, Pout is
the output field power, ψðξ; τÞ is the intracavity field at position ξ
in the ring, and R and T are the reflection and transmission
coefficients, respectively.
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FIG. 2 (color online). (a) Output spectrum of the propagation of
the HSS cw solution for normal (b2 ¼ þ0.5, blue solid line) and
anomalous (b2 ¼ −0.5, green dashed line) dispersions, in the
case b3 ¼ 0. The propagation distance is ξ ¼ 27. (b) Same as
(a) but with b3 ¼ −0.0758. All other relevant parameters are
given in the text. The pump maximum, located at 0 dB, is cut for
clarity. As an example, in (b), the positions of P1 and P2 are (in
units of ω=ω0) 0.5759 and 1.2859 for anomalous dispersion and
0.7141 and 1.4241 for normal dispersion. Equations (5) and (6)
predict 0.5756 and 1.2862 for the former case and 0.7123 and
1.4241 for the latter, showing excellent agreement.
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THG and pump and loss in the system. This proves, for
the first time to our knowledge, the existence of novel kinds
of emissions in the cw regime that are due to the
contribution of negative frequencies in the nonlinear
polarization [Eq. (3)].
Figure 3(a) shows the formation of a stable moving CS in

the cavity, in the presence of third-order dispersion, b3 ≠ 0,
and in anomalous dispersion, b2 ¼ −0.5, when using the
eLLE (4). The input seed is taken to be ψðξ ¼ 0; τÞ ¼ffiffiffiffiffi
2δ

p
sechð ffiffiffiffiffi

2δ
p

τÞ, i.e., the autosolution of the pulsed cavity
[25], which is a good approximation (albeit with vanishing
background) of the final CS. Figure 3(b) shows the real part
of the phase-matching curves of Eqs. (5) and (6), and the
prediction of the frequency positions of all the resonant
radiations. The green dashed line in Fig. 3(c) shows the
intracavity field spectrum, in the case when only the Kerr
effect is present in the nonlinear polarization of Eq. (3) (i.e.,
the case of the conventional temporal LLE). In this case,
only the usual RR peak, which satisfies Eq. (5), is emitted
near the pump (with a very small contribution from its
symmetric counterpart, not discussed here, see Ref. [12]).

The solid blue line in Fig. 3(c) shows the spectrum when
taking into account all the terms in the full polarization,
which contains also the NK and the THG terms, see Eq. (3).
One can notice the appearance of relatively strong peaks,
which are the NRR and the THRR peaks described in the
previous section. Equations (5) and (6) predict peaks
located at ω=ω0 ¼ 1.286247 (THRR), 0.575641 (NRR),
0.79236 (RR), while the simulation based on Eq. (4)
[Fig. 3(c)] shows peaks at ω=ω0 ¼ 1.286, 0.5759, and
0.7926, showing excellent agreement between theory and
simulations. The inset in Fig. 3(c) also shows the com-
parison between the results of Eq. (4) and the Ikeda map of
Eqs. (1) and (2). For these parameters, excellent qualitative
agreement is found. Figure 3(d) shows the position of
the NRR and THRR peaks for different values of κ. The
amplitudes of the radiations vary since the CS background
oscillates during propagation.
Discussion and conclusions.—Our results show that

frequency comb formation in Kerr media is affected by
the resonant radiations resulting from the nonlinear inter-
actions between positive and negative frequencies. These
new types of emissions play a conceptually important but
somewhat minor role in optical fibers and bulk materials.
However, in optical resonators such as fiber loops and
microrings, the field is forced to circulate many times in
the cavity, and CSs possess a cw background that may
dramatically enhance the emission of the new radiations.
As a consequence, the output KFC spectra are affected by
the radiation peaks emitted by CSs and the “negative
frequency” radiations play an important role. We have
provided the derivation of a universal model (the eLLE),
not based on the SVEA, that is able to take into account the
full dynamics of the ultrashort intracavity pulses, and is
amenable to analytical investigations. Because the univer-
sality of the NLS-type equations, our results can open new
opportunities in very diverse fields, such as Bose-Einstein
condensates, mode-locked fiber lasers, nonlinear plas-
monics, and cavity polaritonics. The contribution of the
conjugate fields, which leads to the nonlinear interaction
between the positive and negative frequency components,
is usually neglected in many areas of physics, but it can
have profound consequences for their nonlinear dynamics.
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FIG. 3 (color online). (a) Formation of a stable moving CS in
the cavity, after a propagation of ξ ¼ 27. (b) Real part of phase-
matching curves for the three equations (5) and (6): (i) for Eq. (5),
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the eLLE (4) for ξ ¼ 27. (d) Enlargement of the NRR and THRR
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PRL 115, 193904 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 NOVEMBER 2015

193904-4

http://dx.doi.org/10.1126/science.1193968
http://dx.doi.org/10.1126/science.1193968
http://dx.doi.org/10.1038/nphoton.2013.343
http://dx.doi.org/10.1038/nphoton.2013.343
http://dx.doi.org/10.1364/OE.23.007713


[4] P. Parra-Rivas, D. Gomila, M. A. Matías, P. Colet, and
L. Gelens, Opt. Express 22, 30943 (2014).

[5] P. Parra-Rivas, D. Gomila, M. A. Matias, S. Coen, and
L. Gelens, Phys. Rev. A 89, 043813 (2014).

[6] P. Parra-Rivas, D. Gomila, F. Leo, S. Coen, and L. Gelens,
Opt. Lett. 39, 2971 (2014).

[7] A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K.
Chembo, Phys. Rev. A 89, 013835 (2014).

[8] N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602
(1995).

[9] A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87,
203901 (2001).

[10] F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E
70, 016615 (2004).

[11] D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell,
Science 301, 1705 (2003).

[12] C. Millián and D. V. Skryabin, Opt. Express 22, 3732
(2014).

[13] S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, Opt.
Lett. 38, 37 (2013).

[14] J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, Opt.
Lett. 39, 5503 (2014).

[15] M. R. E. Lamont, Y. Okawachi, and A. L. Gaeta, Opt. Lett.
38, 3478 (2013).

[16] Y. Okawachi, K. Saha, J. S. Levy, Y. Henry Wen, M. Lipson,
and A. L. Gaeta, Opt. Lett. 36, 3398 (2011).

[17] E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D.
Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F.
König, and D. Faccio, Phys. Rev. Lett. 108, 253901 (2012).

[18] M. Conforti, A. Marini, T. X. Tran, D. Faccio, and
F. Biancalana, Opt. Express 21, 31239 (2013).

[19] M. Haelterman, S. Trillo, and S. Wabnitz, Opt. Commun.
91, 401 (1992).

[20] M. Haelterman, S. Trillo, and S. Wabnitz, Opt. Lett. 17, 745
(1992).

[21] Sh. Amiranashvili, U. Bandelow, and N. Akhmediev, Phys.
Rev. A 87, 013805 (2013).

[22] Sh. Amiranashvili and A. Demircan, Adv. Opt. Technol.
2011, 989515 (2011).

[23] L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58, 2209
(1987).

[24] I. V. Barashenkov and Yu. S. Smirnov, Phys. Rev. E 54,
5707 (1996).

[25] S. Coen and M. Erkintalo, Opt. Lett. 38, 1790 (2013).

PRL 115, 193904 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 NOVEMBER 2015

193904-5

http://dx.doi.org/10.1364/OE.22.030943
http://dx.doi.org/10.1103/PhysRevA.89.043813
http://dx.doi.org/10.1364/OL.39.002971
http://dx.doi.org/10.1103/PhysRevA.89.013835
http://dx.doi.org/10.1103/PhysRevA.51.2602
http://dx.doi.org/10.1103/PhysRevA.51.2602
http://dx.doi.org/10.1103/PhysRevLett.87.203901
http://dx.doi.org/10.1103/PhysRevLett.87.203901
http://dx.doi.org/10.1103/PhysRevE.70.016615
http://dx.doi.org/10.1103/PhysRevE.70.016615
http://dx.doi.org/10.1126/science.1088516
http://dx.doi.org/10.1364/OE.22.003732
http://dx.doi.org/10.1364/OE.22.003732
http://dx.doi.org/10.1364/OL.38.000037
http://dx.doi.org/10.1364/OL.38.000037
http://dx.doi.org/10.1364/OL.39.005503
http://dx.doi.org/10.1364/OL.39.005503
http://dx.doi.org/10.1364/OL.38.003478
http://dx.doi.org/10.1364/OL.38.003478
http://dx.doi.org/10.1364/OL.36.003398
http://dx.doi.org/10.1103/PhysRevLett.108.253901
http://dx.doi.org/10.1364/OE.21.031239
http://dx.doi.org/10.1016/0030-4018(92)90367-Z
http://dx.doi.org/10.1016/0030-4018(92)90367-Z
http://dx.doi.org/10.1364/OL.17.000745
http://dx.doi.org/10.1364/OL.17.000745
http://dx.doi.org/10.1103/PhysRevA.87.013805
http://dx.doi.org/10.1103/PhysRevA.87.013805
http://dx.doi.org/10.1155/2011/989515
http://dx.doi.org/10.1155/2011/989515
http://dx.doi.org/10.1103/PhysRevLett.58.2209
http://dx.doi.org/10.1103/PhysRevLett.58.2209
http://dx.doi.org/10.1103/PhysRevE.54.5707
http://dx.doi.org/10.1103/PhysRevE.54.5707
http://dx.doi.org/10.1364/OL.38.001790

