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We investigate the intrinsic uncertainty in the accuracy to which a static spacetime can be measured from
scattering experiments. In particular, we focus on the Schwarzschild black hole and a spatially kinked
metric that has some mathematical resemblance to an expanding universe. Under selected conditions we
find that the scattering problem can be framed in terms of a lossy bosonic channel, which allows us to
identify shot-noise scaling as the ultimate scaling limit to the estimation of the spacetimes. Fock state
probes with particle counting measurements attain this ultimate scaling limit and the scaling constants for
each spacetime are computed and compared to the practical strategies of coherent state probes with
heterodyne and homodyne measurements. A promising avenue to analyze the quantum limit of the
analogue spacetimes in optical waveguides is suggested.
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I. INTRODUCTION

Heisenberg’s uncertainty principle is one of the defining
features of measurement that distinguishes quantum and
classical mechanics. It imposes a fundamental limit to the
precision with which nonrelativistic complementary vari-
ables, like position and momentum, can be known simul-
taneously. As argued by Unruh [1] the limits imposed by
quantum measurement in gravitational contexts can lead to
surprising insights that may even shed light on the problem
of the quantization of gravity. A better understanding of
these quantum imposed limitations on the measurability of
spacetime is therefore of great interest.
Understanding how the measurement precision of a

physical quantity scales with the available resources is
currently a very active area of research going by the name
of quantum metrology (see the reviews [2,3]). Quantum
metrology has been used for ultra precise gravitational
wave searches [4,5], frequency calibration in atomic
spectroscopy [6], subclassical quantum lithography [7,8]
and entanglement-assisted magnetometry [9] and electrom-
etry [10] to name a few.
Measuring physical quantities that play a role in rela-

tivity such as gravitational field strengths, proper accel-
erations and spacetime parameters is of great interest not
only to science but also to technology. Recently, techniques
that apply quantum metrology to quantum field theory in
curved and flat spacetime have been developed [11–14].
The application of these techniques can in principle
produce technologies that outperform nonrelativistic quan-
tum estimation of gravitational parameters. Indeed, it was
shown that relativistic effects, such as particle creation, can
be exploited to improve the measurement of accelerations

[13] and the detection of gravitational waves [15]. Earlier
work showed that the mode entanglement generated by the
expansion of the Universe encodes the expansion rate of the
Universe [16]. Also it was shown that phase estimation
techniques could be employed to measure the Unruh effect
at accelerations that are within experimental reach [11]
(see also [17] for the application of channel discrimination
to such experiments).
A typical problem in quantum metrology is that of

quantum parameter estimation whereby one attempts to
find the best estimation of an unobservable continuous
variable, θ, that parametrizes a state, ρðθÞ. An illustrative
and pertinent example is the two-mode beam splitter. When
a fixed state of light is shone onto a beam splitter, the beam
splitter reflectivity is encoded into the output state. Since
there is no reflectivity observable, no measurement exists
that determines the reflectivity precisely. Rather the reflec-
tivity must be inferred by performing other measurements
on the output state. By performing a general positive
operator-valued measurement fÔxg, statistical techniques
[18–20] can be applied to the obtained probability distribu-
tion, pðxjθÞ ¼ Tr½ÔxρðθÞ�, to estimate the reflectivity of the
beam splitter. For an unbiased estimator, andN repetitions of
the experiment, the variance of the parameter is bounded by
the Cramer-Rao inequality, ðΔθÞ2 ≥ 1=NFðθÞ, where

FðθÞ≡
Z

pðxjθÞ
�
d logpðxjθÞ

dθ

�
2

dx ð1Þ

is the Fisher information. The Fisher information is bounded
above by the quantum Fisher information which provides
a measure of the ultimate precision attainable (i.e.,
best measurement strategy) for a given probe state. Since
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the quantum Fisher information is achievable asymptoti-
cally [21], the quantum Cramer-Rao bound provides a
parameter based uncertainty relation for the unobservable
quantity.
Recently, several examples of the optimal quantum

Cramer-Rao lower bound for measuring various single
parameter spacetime metrics have been given [12] (see also
[1,11,13–15,22]). These relations were found by applying
the abstract formulation of quantum field theory in curved
spacetime known as the locally covariant approach [23].
In this paper, we instead find quantum limitations on the
spacetime measurement by investigating scattering experi-
ments in the usual formalism of quantum field theory in
curved spacetime [24].
Scattering experiments have proved extremely fruitful

in probing the details of subatomic phenomena [25,26] and
are also commonly used for measuring properties of larger
bodies, for example in radar. The theory of scalar wave
scattering from black holes has a long history [27] (see [28]
for a comprehensive review). Until now these works have
invariably focused on measurements of the differential
cross section of scattered plane waves. This setup is
principally classical because the problem can always be
phrased in terms of classical waves and intensity measure-
ments. We consider here whether the strategy of scattering
quantum probes and performing quantum measurements
(i.e., homodyne, heterodyne, particle counting etc) can
attain greater precision on the information of gravitational
objects, like black holes. This is motivated by the fact that
at fixed energy quantum metrological strategies generally
give heightened sensitivity over those which are purely
classical. While the quantum treatment of fields on gravi-
tational backgrounds is not new (indeed Hawking radiation
[29] itself was derived by considering the quantum nature
of the field that is scattered through a collapsing body) to
our knowledge the quantum scattering problem has not
been analyzed in the context of precision measurements of
the spacetime.
We find the precision sensitivity limits for the spacetime

parameters as a function of the given energy resources and
find that because the channel is intrinsically noisy the
variance is limited by the classical shot-noise scaling.
While the Heisenberg limit (a quadratic improvement over
the shot-noise scaling) cannot be achieved in this setup we
present the optimal constant scaling factor and compare it
against other strategies.
At optical wavelengths optimal estimation occurs for

black holes with masses that are too small to be produced
by any known physical processes. Rather we find that for
black holes with masses of the order of magnitude of the
sun radio waves are required. This rules out a standard
quantum optics implementation for physical black holes.
Nevertheless, using a correspondence between the propa-
gation of electromagnetic fields in dielectric waveguides, we
propose a quantum optics experiment capable of verifying

the general concepts we have outlined for micron-sized
analogue black holes.

II. BLACK HOLE SCATTERING

In our first example we consider quantum scattering
experiments in the exterior region of the Schwarzschild
black hole. The Schwarzschild metric is

ds2 ¼ fMðrÞdt2 − fMðrÞ−1dr2 − r2dΩ2; ð2Þ

where fMðrÞ ¼ 1 − 2M=r and dΩ2 ¼ dθ2 þ sin2θdϕ2.
Scalar field perturbations satisfy the Klein-Gordon equa-
tion on the unperturbed Schwarzschild background:

1ffiffiffiffiffiffi−gp ∂μðgμν
ffiffiffiffiffiffi
−g

p ∂νϕÞ ¼ 0; ð3Þ

with the solution ϕ ¼Pl;m

R
dωr−1RðrÞYl;mðθ;ϕÞe−iωt,

where Yl;m are spherical harmonics and the radial function,
RðrÞ, satisfies the equation:

d2R
dx2

þ ðω2 − VðrÞÞR ¼ 0; ð4Þ

where x ¼ rþ 2M logðr=2M − 1Þ, and

VðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ 2M

r3

�
: ð5Þ

The first term in the potential comes from the centrifugal
barrier, while the second is due to the curvature of the
spacetime [30]. The potential reaches its maximum at
some position xmax outside the event horizon and vanishes
both at spatial infinity, x → ∞, and just outside of the
horizon x → −∞.
We consider an observer at spatial infinity attempting to

measure the black hole mass by scattering waves off the
potential. For simplicity, we assume that the probe wave
is quasimonochromatic having a very narrow frequency
spread relative to its midfrequency Δω=ω ≪ 1. For con-
venience we also suppose that the ingoing waves have
definite values of l and m [35]. By the conservation of
energy and angular momentum the scattered waves will
maintain these properties. We further assume that the black
hole mass is large enough that it is not significantly
increased by the infalling particles from the probe.
In general, exact solutions to (4) do not exist, however

near the horizon and at spatial infinity the radial solutions
take the asymptotic form R ∼ e�iωx, see Fig. 1. The
“entering” modes behave like ϕ1 ∼ eiωðx−tÞ as x → −∞
and ϕ2 ∼ e−iωðxþtÞ as x → ∞. Similarly, the “exiting”
modes, denoted by primes, behave like ϕ0

1 ∼ e−iωðxþtÞ as
x → −∞ and ϕ0

2 ∼ eiωðx−tÞ as x → ∞. One easily checks
(using the Wronskian) that ϕ1 and ϕ0

1 and ϕ2 and ϕ0
2

are respective pairs of linearly independent solutions.
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By evolving the ϕ1 and ϕ0
1 modes through to the other

side of the scattering potential, one is able to determine
the transfer matrix, M, which relates the 1 modes to the 2
modes:

�
ϕ1

ϕ0
1

�
¼ M

�
ϕ0
2

ϕ2

�
: ð6Þ

Using R0
1ðx → −∞Þ ¼ R�

1ðx → −∞Þ and R0
2ðr� → ∞Þ ¼

R�
2ðr� → ∞Þ, we find the relations between the transfer

matrix elements: M21 ¼ M�
12 and M22 ¼ M�

11. Also, since
the 3-current of a stationary solution in a time-independent
potential is divergenceless, one can evaluate the current
flux integral through the surfaces of two concentric
spherical shells at x → �∞ to find detðMÞ ¼ 1. The
unitary scattering matrix, S, which takes unprimed entering
modes into primed exiting modes, is then obtained by
simple rearrangement:

�
ϕ0
1

ϕ0
2

�
¼ S

�
ϕ1

ϕ2

�
; S ¼ 1

M�
11

�
M12 1

1 −M�
12

�
: ð7Þ

Everything until this point has been a purely classical wave
calculation. In order to introduce quantum states the field
must be quantized. Quantization of fields on static space-
times is now well understood and generally believed to be
correct [24,36]. To define the annihilation operators for
the entering and exiting modes one uses the Klein-Gordon

inner product ðf1; f2Þ ¼ i
R
f�1∂μ

↔
f2dΣμ, where Σ is a

constant-t hypersurface [37]. Then the positive frequency
modes (ω > 0) result in the annihilation operators for
i ¼ 1, 2:

â0i ≡ ðϕ0
i; Φ̂Þ; âi ≡ ðϕi; Φ̂Þ; ð8Þ

where Φ̂ is the field operator. From the orthonormality of
the ϕ1 and ϕ2 field modes, the annihilation operators can be
seen to satisfy the usual commutation relations: ½â1; â†1� ¼
½â2; â†2� ¼ 1 (and similarly for primed modes). Then Eq. (7)

reveals that the scattering is a two-mode passive unitary
channel: â0i ¼ S�ijâj. For scattering from outside the poten-
tial S�11 and S�12 are the reflection and transmission
amplitudes respectively. Reparametrizing S�11 ¼ eiθR cosϕ
and S�12 ¼ eiθT sinϕ we obtain

S� ¼
�
eiθR 0

0 −eiðθTþθÞ

��
cosϕ eiθ sinϕ

−e−iθ sinϕ cosϕ

�
; ð9Þ

where θ≡ θT − θR. The black hole scatterer is carrying out
the same operation as a two-mode beam splitter followed
by two single mode phase-shift operations.
We choose here to investigate the strategy of a single

observer far away from the black hole [38]. As mode 2 is
not measured, the phase shift can be absorbed i.e.,
â02 → −e−iðθTþθÞâ02. On the other hand, the eiθR phase shift
is measurable if the observer at infinity keeps a very precise
local clock [39] and the signal does not drift over the
duration of the experiment. This latter requirement is
somewhat unrealistic when one considers astrophysical
time scales. Nevertheless, it is still possible to phase lock
the signal to a clock by sending the phase reference (local
oscillator) through the potential along with the signal.
However, then both the signal and local oscillator receive
the same phase shift which then becomes unobservable
(i.e., their relative phase is fixed). This situation can be
expressed by redefining the operator â01 → −e−iθR â01, then
the phase-locked scattering corresponds to only beam
splitting. Thus with these redefinitions of the mode
operators the effective transformation on the entering
modes becomes simply the right matrix on the rhs of
Eq. (9).
We assume that the observer, who is far from the black

hole, can only measure the reflected part of the wave. The
partial loss of the initial state due to the transmission into
the black hole makes the scattering as observed from
infinity nonunitary. To see this we note that since the
mode â02 gets lost in the black hole, the map acting on the
input state ρ ¼ ρ1 ⊗ j0i2h0j2 is given by operating with
the unitary representation of the beam splitting operation
DðχÞ and then tracing over mode 2:

EðρÞ≡ Tr2½DðχÞρ1 ⊗ j0i2h0j2D†ðχÞ�; ð10Þ

where DðχÞ ¼ exp ðχâ†1â2 − χ�â1â
†
2Þ with χ ¼ ϕeiθ.

Explicitly, the mode operators transform as

â01 ¼ D†ðχÞâ1DðχÞ ¼ â1 cosϕþ â2eiθ sinϕ; ð11Þ

â02 ¼ D†ðχÞâ2DðχÞ ¼ −â1e−iθ sinϕþ â2 cosϕ: ð12Þ

Note that the state of the ingoing mode, ϕ2, has been chosen
to be the vacuum. While a collapsed black hole will
naturally emit radiation in a thermal state at the
Hawking temperature, T ¼ 1=8πM [29,41], this radiation

FIG. 1 (color online). Plotof thepotential (blue filledcurve) in the
exteriorblackholeregion;theevenhorizonisatx → −∞.Themodes
are labeled with subscripts 1 and 2, where 1 indicates the mode is
either entering (unprimed) or exiting (primed) the scattering center
from the horizon (x ≪ xmax) while the subscript 2 indicates that
the mode is either entering (unprimed) or exiting (primed) the
scattering center from outside the potential (x ≫ xmax).
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is negligible when the frequency of the probe is much larger
than the temperature, ω ≫ 1=8πM [42].
Using Eqs. (11)–(12) and h0j2DðχÞj0i2 ¼ ðcosϕÞâ†1â1

which follows from the angular momentum operator order-
ing theorem [43], one obtains

EðρÞ ¼
X∞
n¼0

sin2nϕ
n!

ðcosϕÞâ†1â1 ân1ρ1ðâ†1ÞnðcosϕÞâ
†
1
â1 : ð13Þ

Taking the derivative with respect to ϕ results in the
Lindblad equation: dEðρÞ=dϕ ¼ tanϕLðâ1ÞEðρÞ, where
Lðâ1Þρ≡ 2â1ρâ

†
1 − â†1â1ρ − ρâ†1â1, which is the standard

master equation for a lossy bosonic channel.
The optimal estimation of the loss parameter ϕ for this

channel has been thoroughly investigated in the literature
[44–46]. In particular, in [45] it was shown that the strategy
which realizes the ultimate quantum limit is the n particle
Fock statewith particle countingmeasurements (Fock states
were also shown to be optimal probe states in the estimation
of theUnruh temperature by observersmovingwith uniform
acceleration [11]). This strategy has a Fisher information
of 4n and satisfies the quantum Cramer-Rao bound,
Δϕ ≥ 1ffiffiffiffiffiffiffi

4nN
p , where N is the number of repetitions of the

experiment. Since the reflection parameter is only a function
of the mass, using the reparametrization property of the
Fisher information, FðMÞ ¼ FðϕðMÞÞðdϕdMÞ2, we obtain the
limit on the uncertainty in the mass of the black hole:

ΔM ≥
1

j dϕdM j
1ffiffiffiffiffiffiffiffiffi
4nN

p : ð14Þ

The rhs scales like the inverse square root of the energy
resource (i.e., particle number) which is often referred to as
the shot-noise limit. Although the use of quantum entangle-
ment in unitary channels is known to lead to a quadratic
improvement over the shot-noise limit called theHeisenberg
limit, it has been shown in [47] that shot-noise scaling—up
to some proportionality constant—is optimal for lossy
channels. Since our channel is nonunitary we expect
shot-noise scaling and according to the arguments in
[45], the proportionality constant of (14) is optimal.
To investigate how the information about the mass of

the black hole is encoded in this loss parameter, one needs
explicit functions of the reflection and transmission ampli-
tudes in terms of the black hole mass. While such exact
solutions are not expressible in simple closed form,
approximate expressions can be found by making the
Pöschl-Teller approximation [48]. Under this approxima-
tion one finds

S�11 ¼
Γð−iω=αÞΓð1þ β þ iω=αÞΓð−β þ iω=αÞ

Γðiω=αÞΓð1þ βÞΓð−βÞ ; ð15Þ

S�12 ¼
Γð1þ β þ iω=αÞΓð−β þ iω=αÞ

Γð1þ iω=αÞΓðiω=αÞ ; ð16Þ

where α≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− d2VðxmaxÞ

dx2 =2VðxmaxÞ
q

is the curvature of

the potential at its maximum and β≡ −1=2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 − VðxmaxÞ=α2

p
.

The results of the optimal experiment are shown in Fig. 2
compared to those of the suboptimal (quantum strategies).
The suboptimal examples, have been chosen because they
are very robust experiments that are routinely performed in
optics laboratories (the Fisher information for these strat-
egies is calculated in the Appendix). On the other hand
precise control over Fock states is still limited to relatively
low particle numbers [49].
In experiments, it is generally harder to achieve a given

absolute error when the quantity of interest is of a much
larger magnitude than the error itself. A better measure of
the quality of a measurement strategy is the relative
uncertainty, ΔM

M , which gives the uncertainty or error as a
ratio of the quantity itself. We define the relative sensitivity,
ϵ, as the minimum relative uncertainty. From Eq. (14) we
have

ϵ ¼
�
M
��� dϕ
dM

��� ffiffiffiffiffiffiffiffiffi4nN
p �

−1
: ð17Þ

As shown in Fig. 3, for a given black hole mass there is an
optimal frequency at which the lowest number of resources
(particles) are required to obtain the best relative sensitivity
of the mass estimation. Therefore, given the order of
magnitude of the black hole mass, there is a preferred
frequency scale which gives the best estimation of the mass
for the lowest number of resources. We find numerically
that the optimal frequency is given by

0.10 0.15 0.20 0.25

1

2

3

4

5

6

M2

M G c3

FIG. 2 (color online). Comparison of the constant scaling factor
κ for different black hole mass estimation strategies. κ is defined
by the inequality ðΔMÞ2 ≥ κ

nN where n is the mean particle
number of the initial state, and N is the number of repetitions of
the experiment. (top orange) Coherent state with heterodyne
measurements, (middle green) coherent state with homodyne
measurements and (bottom blue) Fock state with particle count-
ing measurements. For all values of the mass the Fock state
strategy gives the lowest scaling factor and hence the best
estimation of the mass.
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ωopt ¼ 0.15 ×
c3

MG
: ð18Þ

This optimal frequency can then be used to determine the
best experimental configuration to do black hole mass
estimation in an analogue experiment in a waveguide
described in more detail in Sec. IV.
It is worth checking the consistency of these results in

light of the fact that we are neglecting the effects of
Hawking radiation. The average number of particles in the
frequency band ωopt � dΩ=2 measured over the pulse
duration dΩ−1 is given by the Bose-Einstein factor [29]:

hnωopt
i ¼ 1

e8πMGωopt=c3 − 1
: ð19Þ

Therefore, in such a wave packet at the optimal frequency
(18) we expect only 0.024 particles from the Hawking
effect. This justifies the assumption that the mode is
approximately in the vacuum state.

III. THE KINKED SPACETIME

We now repeat the previous arguments with an analogue
expanding spacetime which we will refer to as a kinked
spacetime. We consider a one dimensional static metric,

ds2 ¼ gtðzÞdt2 − dz2; ð20Þ
that is asymptotically constant but kinked in the middle
according to the profile [see (3.86) of [24]]:

−gtðzðxÞÞ ¼ Aþ B tanh ρx; ð21Þ
where x is defined in analogy to the tortoise coordinate,
dz
dx ¼

ffiffiffiffiffiffiffiffiffiffi
gtðzÞ

p
, and A, B and δ are constants satisfying A ¼

−1þ δ
2
and B ¼ δ

2
, δ > 0. The relationship of (20) to the

expanding universe metric:

ds2 ¼ dt2 − gzðtÞdz2; ð22Þ

is given [50] by interchange of the spatial and temporal
coordinates, t↔z, and multiplication of the line element by
minus one, ds2 → −ds2.
A massive scalar field propagating in the geometry (20),

has the general solution ϕ ¼ ZðzÞe−iωt where Z satisfies the
equation:

d2Z
dx2

þ ðω2 −m2gtðzÞÞZ ¼ 0; ð23Þ

which is again of the Schrödinger form with a spatially
dependent potential this time given by m2gtðzÞ. If the
potential is parametrized by a single parameter then an
observer on one side can estimate the parameter by
performing scattering experiments like that described for
black holes in the previous section. The asymptotic form
of the solutions to (23) satisfy Zðx → ∞Þ ∼ e�ik2x and
Zðx → −∞Þ ∼ e�ik1x where

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ðA − BÞm2

q
; ð24Þ

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ðAþ BÞm2

q
: ð25Þ

For the choice of profile (21) the solutions are [24]

Z0
1ðxÞ≡ 1ffiffiffiffiffi

k1
p exp

�
−ikþx − i

k−
ρ
ln ð2 cosh ρxÞ

�

× 2F1

�
1þ ik−

ρ
;
ik−
ρ

; 1 −
ik1
ρ

;
1

2
ð1þ tanh ρxÞ

�
;

ð26Þ

where k� ≡ 1
2
ðk2 � k1Þ. A second solution, is found by

Z1ðxÞ ¼ Z0
1ðxÞ�. The other two solutions are given by

Z2ðxÞ≡ 1ffiffiffiffiffi
k2

p exp

�
−ikþx − i

k−
ρ
ln ð2 cosh ρxÞ

�

× 2F1

�
1þ ik−

ρ
;
ik−
ρ

; 1þ ik2
ρ

;
1

2
ð1 − tanh ρxÞ

�
;

ð27Þ

and Z0
2ðxÞ ¼ Z2ðxÞ�. Using (15.3.6) and (15.3.3) of [51]

the 1 modes can be related to the 2 modes via:

Z0
1 ¼ αZ2 þ βZ0

2; ð28Þ

Z1 ¼ α�Z0
2 þ β�Z2; ð29Þ

where

α ¼
ffiffiffiffiffi
k2
k1

s
Γð1 − ik1

ρ ÞΓð− ik2
ρ Þ

Γð− ikþ
ρ ÞΓð1 − ikþ

ρ Þ
; ð30Þ

0.0 0.2 0.4 0.6 0.8 1.0
M G c3

1

100

104

106

108

n N

0.001
0.01

0.1
1

FIG. 3 (color online). Relative sensitivity contour lines as a
function of the black hole mass, n is the particle number of the
initial Fock state, and N is the number of repetitions of the
experiment. Blue shaded region is where Hawking radiation will
be significant and where our approximations are no longer valid.
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β ¼
ffiffiffiffiffi
k2
k1

s
Γð1 − ik1

ρ ÞΓðik2ρ Þ
Γðik−ρ ÞΓð1þ ik−

ρ Þ
: ð31Þ

By rearrangement of (28)–(29) we obtain the scattering
matrix:

�
ϕ0
1

ϕ0
2

�
¼ S

�
ϕ1

ϕ2

�
; S ¼

 
β
α�

1
α�

1
α� − β�

α�

!
: ð32Þ

One easily verifies the unitarity from the relation
jαj2 − jβj2 ¼ 1. So the scattering matrix is unitary and
reduces again into a combination of beam splitting and
phase-shift operations. Had one taken the expanding
spacetime analogy too literally one may have been antici-
pating a squeezing channel (particle creation) instead.
Of course this is impossible because the spacetime is static
and so the energy is necessarily conserved. However, it is
interesting to note that the nonpassive squeezing which
produces particles in the expanding spacetime has been
replaced in the kinked spacetime analogy with a two-mode
beam splitting operation. In this sense, particle creation and
beam splitting are related under this symmetry. Previous
work has shown that entanglement is generated in expand-
ing spacetimes that create particles through a squeezing
channel. In such situations, the expansion spacetime
parameters can be estimated though the entanglement
[16]. Here we find the optimal strategy to estimate the
parameters of kinked spacetimes where states undergo
mode mixing through a beam splitting channel.
We consider a single observer on the left side of the kink,

who sends in probes to estimate the curvature parameter, ρ,
from the reflected waves, see Fig. 4. Since the transmitted
part of the signal propagates away from the observer it is
effectively lost. Assuming that there is no radiation ingoing
from the left-hand side, and that the experimenter only
makes measurements of the reflected wave in the right-
hand side, the problem becomes identical to that found for
black holes [52] except that now the curvature parameter ρ
is being estimated instead of the mass. We can immediately
infer that the channel is also a lossy bosonic channel
given by (13) with cosϕ ¼ j βα j ¼ sinhðπk−ρ Þ= sinhðπkþρ Þ.

Furthermore, Fock state preparation and particle counting
will again give the optimal strategy. Results for the
comparison of scaling constants and the relative sensitivity
of the optimal Fock state measurement strategy are shown
in Fig. 5 and Fig. 6 respectively.

IV. ANALOGUE BLACK HOLE POTENTIALS
IN A WAVEGUIDE

To get a feel for the magnitudes involved, the peak
sensitivity in the black hole mass measurement occurs

FIG. 4 (color online). Plot of the potential (blue filled curve) for
the kinked spacetime. As in the black hole case, the purely
ingoing and outgoing modes in the left region where the field is
prepared and measured are labeled with the subscript 1 while
those in the unmeasured region are labeled with the subscript 2.
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3

4

m c 2

m c

FIG. 5 (color online). Comparison of the constant scaling factor
κ for different spacetime estimation strategies, ω ¼ 1.01 and
ε ¼ 0.1 (in natural units with mass scale set by m ¼ 1). κ is
defined by the inequality ðΔρÞ2 ≥ κ

nN where n is the mean particle
number of the initial state, and N is the number of repetitions of
the experiment. (top orange) Coherent state with heterodyne
measurements, (middle green) coherent state with homodyne
measurements and (bottom blue) Fock state with particle count-
ing measurements. For all values of the mass the Fock state
strategy gives the lowest scaling factor and hence the best
estimation of the kink curvature parameter, ρ.
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FIG. 6 (color online). Relative sensitivity contour lines,
ϵ ¼ ðρj dϕdρ j

ffiffiffiffiffiffiffiffiffi
4nN

p Þ−1, as a function of the kink curvature param-
eter for ω ∼ 1535 THz. n is the particle number of the initial Fock
state, and N is the number of repetitions of the experiment.

DOUKAS et al. PHYSICAL REVIEW D 90, 024022 (2014)

024022-6



when the width of the potential is of the order of the
wavelength of the probe field. For optical wavelengths this
corresponds to a black hole of about 10−10M⊙. Such black
holes are too small to be produced by astrophysical
processes and too large to be produced in hypothesized
extensions of the standard model [53]. While this method
could be used to measure any sized black hole by
appropriately choosing the probe frequency, in order to
demonstrate our results we focus on settings suitable for
quantum optics experiments. This puts the characteristic
size of the analogue black holes that we consider at the
order of microns.
One easily verifies that our results do not depend

critically on the curved spacetime background. Rather,
the form of Eqs. (4) and (23) and certain assumptions about
the actions of the measurer and the initial state of the field
lead immediately to the identification of the lossy channel
(13). Recently there has been a lot of interest in construct-
ing analogue experiments that reproduce the behavior of
quantum fields in curved spacetimes [54]. This has been for
the purpose of observing Hawking radiation. In our case,
we are interested in the estimation of the black hole mass in
the regime in which the Hawking radiation is negligible.
Therefore, an analogue black hole potential for our pur-
poses is simply a physical system having field equations of
the Schrödinger form (4) or (23). Any physical systems
satisfying this equation will reproduce the relevant phe-
nomena that we have investigated. From the many candi-
date systems available, those which provide excellent
precision and control over the shape of the potential give
the most accurate representations the actual spacetimes.
It should be emphasized that in constructing the

analogue system in this way there is strictly speaking no
black hole. The tortoise coordinate has moved the horizon
all the way to spatial infinity. Therefore, there is no region
of the physical space from which light cannot escape.
Nevertheless, our objective is to model the potential in
the external region of the Schwarzschild space outside
the horizon since this allows us to investigate (in the regime
of negligible Hawking radiation) the black hole scatter-
ing problem in analogue systems, our approach should
therefore be distinguished from that of [55].
Waveguides with position dependent geometries provide

promising realizations of such analogues [56,57], see also
[58,59]. Consider Maxwell’s equations for an electric field
with sinusoidal time dependence e−iωt that is polarized in
the z direction in a nondissipative medium with permittivity
ε and permeability μ:

ð∇2 þ μεω2ÞEzðx; y; zÞ ¼ 0: ð33Þ

We suppose that the mode propagates in the x direction and
that the transversal geometry of the waveguide varies along
this direction, see Fig. 7. The solution is assumed to remain
in the fundamental mode of the transversal Laplacian

∇2⊥Ez ¼ −βðxÞEz where the eigenvalue βðxÞ depends on
the geometry of the waveguide. We expect this assumption
to be good when the transversal geometry does not vary
significantly over distances shorter than the wavelength
β−1j dβdx j ≪ λ−1. Equation (33) can then be written:

d2Ezðx; y; zÞ
dx2

þ ðμεω2 − βðxÞÞEzðx; y; zÞ ¼ 0: ð34Þ

By identifying Ez with R (or Z) and arranging the geometry
of the waveguide such that it matches the desired potential,
(4) or (23), we obtain the required analogue equation.
Note that the tortoise coordinate, x, becomes the position
variable, x, in the analogue equation.
A solution for the corresponding geometry can be found

by determining the effective index of refraction along the x
direction. Using a WKBJ approximation, EzðxÞ ¼ eSðxÞ,
S̈ ≪ _S2, one finds _S ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μεω2 − βðxÞ

p
. Therefore the

phase near the point x0 is ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μεω2 − βðx0Þ

p
x − ωt,

giving a phase velocity:

vpðx0Þ ¼
dx
dt

����
x¼x0

¼ ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μεω2 − βðx0Þ

p ; ð35Þ

or an effective index of refraction:

neffðxÞ≡ c
vpðxÞ

¼ ffiffiffiffi
εr

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

c2βðxÞ
εrω

2

s
; ð36Þ

FIG. 7 (color online). Schematic diagram of the waveguide.
The electromagnetic wave in the x direction. By modifying the
geometry wðyÞ and hðzÞ the effective index of refraction of the
electromagnetic radiation can be precisely controlled and mapped
onto the equations satisfied by a field in a static spacetime
(see main text Sec. IV).
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where εr ≡ ε=ε0 is the relative permittivity and ε0 is the
permittivity of free space.
We now provide a mapping of the black hole potential

onto a waveguide. The function βðxÞ corresponds to the
black hole potential. For the black hole potential (4), we
have (putting back units of c):

βðxÞ ¼
�
1 −

2MG
c2rðxÞ

��
2MG
c2rðxÞ3

�
; ð37Þ

where we consider s-wave scattering in the actual black
hole spacetime, i.e., l ¼ 0, and

rðxÞ ¼ 2MG
c2

�
1þW

�
exp

�
xc2

2MG
− 1

���
; ð38Þ

where W is the Lambert W function.
The maximum of the gravitational potential occurs at

Vmax ¼
27c4

1024M2G2
; ð39Þ

which is mapped to the minimum index of refraction in the
analogy:

nmin ∼
ffiffiffiffi
εr

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

27c6

1024M2G2ω2εr

s
: ð40Þ

The maximum effective index of refraction occurs for
the black hole at spatial infinity where the potential is
zero, and is therefore given by the square root of the relative
permittivity of the material filling the waveguide: nmax ¼ffiffiffiffi
εr

p
. At the optimal frequency (18) the effective refractive

index can be parametrized by the optimal wavelength
(λopt ≡ c=ωopt) and is given by

neffðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εr −

0.3λ3opt
rðxÞ3

�
1 −

0.3λopt
rðxÞ

�s
; ð41Þ

where rðxÞ ¼ 0.3λoptf1þWðexpð x
0.3λopt

− 1ÞÞg.

V. CONCLUSION

We have investigated the measurability of gravitational
parameters in static spacetimes using scattering experi-
ments. While we focused on two examples, namely the
Schwarzschild black hole and the spatially kinked metric,
our approach could also be applied to a variety of other
static spacetimes.
Our setup consisted of considering a single observer,

measuring the spacetime by sending probes through the
gravitational potential and measuring the information con-
tained in the reflected wave. We showed that because
generically there is also transmission the channel is
necessarily lossy. We identified the scaling limit to the

measurement of the quantity parametrizing the potential
and found that it obeys a shot-noise scaling relation. The
best strategy for this type of scattering experiment was
found to be Fock state probes and particle counting
measurements. It should be noted that the results we have
found set a limit only for the experimental arrangement we
have considered. It is plausible that alternative experimental
configurations can provide better performance cf. [12].
While it would not be possible to perform optical

experiments with real black holes, we showed that wave-
guides with position dependent geometries provide a very
good experimental laboratory in which analogue black
hole potential experiments could be conducted. It is worth
mentioning that the tools of quantum enhanced metrology
that we have applied here to the study of gravitational
systems, could even be used for the more practical
application of improving the characterization of fabricated
waveguides. To our knowledge, quantum sensitivity has not
been employed thus far for this purpose. The identification
of Fock states as the ultimate resource for such characteri-
zation is particularly promising in view of recent progress
in Fock state production [49] and improvements in photon
counting techniques [60].
While we have focused on the implementation of our

spacetime measurement strategy in waveguide systems
other analogue systems could also be used to investigate
the quantum imposed limitations on the measurability of
spacetime. For example, there is a well-known correspon-
dence between the propagation of electromagnetic fields in
curved spacetimes and in dielectric media [61]. Recent
theoretical [58] and very exciting experimental work [59]
have produced analogue black holes in which the scattering
problem that we have described appears to be feasible.
Recent results [62] on the quantization of Maxwell’s
equations in epsilon-near-zero metamaterials with aniso-
tropic and inhomogeneous permittivity also provide an
interesting avenue in which the metrological tools we have
discussed could be investigated.
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APPENDIX

Here we provide details of the suboptimal Gaussian
strategies appearing in Fig. 2 and Fig. 5. Since everything is
Gaussian the calculation is simplified by working in
the covariance matrix formalism. The optimal Gaussian
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strategy for the lossy bosonic channel has been found in
[44]. Because the ultimate optimal strategy is non-Gaussian
we are more interested here in comparing it to simple and
practical Gaussian strategies. Therefore we calculate the
Fisher information for coherent and squeezed input states
that are measured in homodyne and heterodyne.
We write the action of a general beam splitter on the

annihilation operators as

â01 ¼ Râ1 þ Tâ2; ðA1Þ

â02 ¼ −T�â1 þ Râ2; ðA2Þ

where R and T are the reflection and transmission ampli-
tudes respectively, jTj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

p
, and R is assumed to

be real.
Recall we consider the situation where the transmitted

mode is lost and the incoming mode from the far side of the
potential is in the vacuum state which leads to a nonunitary
single mode Gaussian map. Any single mode nonunitary
Gaussian transformation can be expressed in terms of its
action on the state’s first moments di ¼ hx̂ii and covariance
matrix σij ¼ 1

2
hx̂ix̂j þ x̂jx̂ii þ hx̂iihx̂ji with i ∈ fx; pg,

according to [63]

dout ¼ Xdin; ðA3Þ

σout ¼ XσinXT þ Y; ðA4Þ

where we define the quadratures x̂x ≡ â01 þ â01
† and x̂p≡

1
i ðâ01 − â0†1Þ. We find X ¼ RI2 and Y ¼ ð1 − R2ÞI2, where
I2 is the 2 × 2 identity matrix.
The first measurement we consider is homodyne detec-

tion with a coherent state input. The first moments and
covariance matrix for this input are din ¼ 2fReðαÞ; ImðαÞg
and σin ¼ I2, where α is the displacement. Using (A3),
(A4) the output state has dout ¼ 2RfReðαÞ; ImðαÞg and
σout ¼ I2, which again is a coherent state, jRαi. We wish to
calculate the optimal measurement with respect to the
Fisher information, which for a homodyne measurement
means we must maximize the Fisher information over all
possible measurement quadratures x̂ðθÞ≡ cos θx̂xþ
sin θx̂p, p̂ðθÞ≡ cos θx̂p − sin θx̂x. We begin by finding
the probability density for the results of homodyne

measurements, pðxðθÞjρoutðRÞÞ¼ RRWðxðθÞ;pðθÞÞdpðθÞ,
where W is the Wigner function of the output state:

WðxðθÞ; pðθÞÞ ¼ 1

2π
exp

�
−
~xðθÞ2 þ ~pðθÞ2

2

�
; ðA5Þ

where we have defined ~xðθÞ≡ xðθÞ − hx̂ðθÞi and ~pðθÞ≡
pðθÞ − hp̂ðθÞi. We find

pðxðθÞjρoutðRÞÞ ¼ 1ffiffiffiffiffiffi
2π

p exp

�
−
~xðθÞ2
2

�
: ðA6Þ

We find that the Fisher information (1) is given by
F ¼ 4ðReðαÞ cos θ þ ImðαÞ sin θÞ2. The maximum for this
function is at cos θ ¼ ReðαÞ=jαj, sin θ ¼ ImðαÞ=jαj, for
which F ¼ 4jαj2 ¼ 4n, where n is the mean particle
number in the coherent state. We note that although there
is no dependence on R, one usually wants to estimate some
other parameter on which the reflection amplitude depends.
For example, the Fisher information in terms of the black
hole mass, FðMÞ, or the spacetime curvature parameter,
FðρÞ, are found using the reparametrization property and
are given by FðRðMÞÞ ¼ 4nðdRdMÞ2 and FðRðρÞÞ ¼ 4nðdRdρÞ2
respectively.
Moving now to heterodyne measurements of initial

coherent states. The measurement is given by the set of
projectors 1

π fjβihβjg where jβi are the set of single mode
coherent states. We consider an initially coherent probe
state, which without loss of generality we consider to be
displaced in the x direction, i.e., jαi with α real. Since
coherent states will remain coherent under the lossy
bosonic channel the reflected output will also be coherent
and is found to be jRαi. The probability distribution is then
obtained from the overlap of two coherent states. This is
easily calculated using the formula for the overlap of two
arbitrary Gaussian states. We find

pðβjRÞ ¼ 1

π
expð−ðRα − ReβÞ2 − ðImβÞ2Þ; ðA7Þ

from which we obtain the Fisher information F ¼
2α2 ¼ 2n, which is exactly half that found for homodyne
measurements.
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