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Stationary nonlinear Airy beams
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We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in
the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in
agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of
Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a
variety of applications are suggested.
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Introduction. Airy beams are a well-known family of
stationary freely accelerating wave forms. Originally proposed
in the context of quantum mechanics as a nonspreading
solution to the Schrödinger equation for free particles [1], they
were later proposed as optical wave packets with finite energy
content [2,3]. The finite-energy Airy beam is characterized
by a main intensity lobe that decays exponentially to zero on
one side and decays with damped oscillations on the other.
The interest for these beams lies in the fact that, if they
have a sufficiently wide apodization, the main intensity lobe
propagates free of diffraction while bending in the direction
transverse to propagation or accelerating along the propagation
direction if the temporal profile of the pulse is Airy shaped [4].
The ballisticlike properties of the Airy beam [5] lend it to
particular applications such as optically mediated particle
clearing [6] or generation of curved plasma filaments [7].
Recently a demonstration of light bullets using Airy cube wave
packets (Airy in space and time) has also been reported [8].
Alongside the linear properties of Airy beams, nonlinear
propagation of high-intensity Airy beams has also attracted
attention [9,10]. It has been noted that upon increasing the Airy
peak intensity the beam may either break up and emit a series of
tangential emissions [11] or exhibit shrinking and modification
of the Airy profile even below the critical threshold power for
self-focusing [12,13]. Notably, Giannini et al. first described
temporal self-accelerating solitons in Kerr media [14].

In this Rapid Communication we demonstrate the existence
of stationary Airy-like solutions in the presence of third-order
Kerr nonlinearity of any sign (i.e., focusing or defocusing) and,
most importantly, even in the presence of nonlinear losses
(NLLs). We perform an analytical analysis that describes
the shape and main features of one-dimensional nonlinear
Airy wave packets, i.e., monochromatic beams that exhibit
a curved trajectory. The Kerr nonlinearity is shown to lead to a
compression of the Airy lobes (for a focusing nonlinearity) and
nonlinear losses lead to an imbalance of the incoming energy
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flux toward the main lobe which in turn induces a reduction
in the contrast of the Airy oscillations. This finding is then
verified in numerical simulations and experiments that show
the spontaneous emergence of the main features of stationary
nonlinear Airy beams.

Analytical description. We consider the propagation of
a monochromatic beam of frequency ω0 in one spatial
dimension. The electric field E(x,z,t) is decomposed into
carrier and envelope as E(x,z,t) = E(x,z) exp(−iωt + ik0z),
where k0 = ω0n0/c is the modulus of the wave vector at ω0

and n0 = n(ω0) is the value of the refractive index at ω0.
In the presence of nonlinearity, such as the Kerr effect and
multiphoton absorption, propagation may be described by the
nonlinear Schrödinger equation for the complex envelope of
the field:

∂E

∂z
= i

2k0

∂2E

∂x2
+ ik0

n2

n0
|E|2E − β(K)

2
|E|2K−2E, (1)

where the nonlinear Kerr modification of the refractive index
is δn = n2|E|2, while K and β(K) � 0 are the order and the
coefficient of multiphoton absorption, respectively.

In the case of linear propagation, Eq. (1) admits the
Airy beam solution E = Ai(y) exp[iφL(y,ζ )], whose intensity
profile is invariant in the uniformly accelerated reference
system defined by the normalized coordinates ζ = z/k0w

2
0,

y = x/w0 − ζ 2/4, with φL(y,ζ ) ≡ yζ/2 + ζ 3/24 and w0 a
typical length scale so that the acceleration or curvature is
given by 1/2k2

0w
3
0. We are interested in finding stationary

nonlinear solutions to Eq. (1), in the above sense (invariant in
the accelerated reference system), with boundary conditions
compatible with the shape and properties of Airy beams, whose
asymptotic behavior as y → ±∞ reads [15]

Ai(y) ∼ |yπ2|−1/4 sin(|ρ| + π/4) for y → −∞, (2)

Ai(y) ∼ (yπ2)−1/4

2
exp(−|ρ|) for y → +∞, (3)

where ρ = (2/3)sgn(y)|y|3/2. We therefore impose the con-
straints of a weakly localized tail toward y → −∞ and
an exponentially decaying tail toward y → +∞. Solutions,
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hereafter called nonlinear Airy beams (NABs) must also match
Airy beams in the absence of nonlinearity. We thus rewrite
Eq. (1) in normalized units in the accelerated reference frame
(ζ,y) as

∂E

∂ζ
− 1

2
ζ

∂E

∂y
= i

2

∂2E

∂y2
+ iγ |E|2E − α|E|2K−2E, (4)

The nonlinear parameters read as γ = k2
0n2w

2
0/n0 and α =

β(K)k0w
2
0/2.

In order to find the shape of NABs, we consider the complex
envelope E = A(y) exp[iφ(y,ζ )] with a ζ -invariant modulus,
substitute into Eq. (4), separate real and imaginary parts, and
require that the ζ dependence of the phase be the same as that
of linear Airy beams φ(y,ζ ) = φL(y,ζ ) + ψ(y). The modulus
A(y) and nonlinear phase ψ(y) satisfy

A′′ − yA − (ψ ′)2A + 2γA3 = 0, (5)

ψ ′A2 = 2α

∫ +∞

y

A2Kdy ≡ Ny, (6)

where primes stand for d/dy. The left-hand side of Eq. (6)
represents the net power flux Ny per unit propagation length
through a y boundary of a semi-infinite domain [y, + ∞) in
the coaccelerating reference frame. Equation (6) imposes the
requirement that the flux compensates for the power Ny lost by
nonlinear absorption within this domain. In the linear case, i.e.,
with no NLLs (α = 0), there is no net energy flux (ψ ′ = 0) and
phase fronts exhibit the curvature of Airy beams [1]. Nonlinear
losses, assumed to be finite [16], increase from N+∞ = 0 at
y → +∞ to N−∞ ≡ 2α

∫ +∞
−∞ A2Kdy at y → −∞, thereby

establishing an additional curvature of the phase front in
the weakly decaying tail of the beam, since ψ ′ → N−∞/A2,
whereas the exponentially decaying tail has the curvature of
the Airy beam. By introducing the variable B(ρ) = A(y)|ρ|1/6,
Eqs. (6) and (5) can be combined into a Newton-like equation
governing the tail amplitude in the limit y,ρ → ±∞:

∂2B

∂ρ2
∓ B = N2

±∞
B3

for ρ → ±∞. (7)

Equation (7) admits solutions in the form B ∼ exp(−ρ)
and B2(ρ) ∼ B2

−∞[1 + C sin(2|ρ|)] as ρ → ±∞. The latter
exhibits oscillations of finite amplitude around the mean value
B−∞ and contrast C ≡ (1 − N2

−∞/B4
−∞)1/2, decreasing as the

amount of total losses increases. In the absence of nonlinear
absorption (N−∞ → 0), it reduces to the asymptotics of Eq. (2)
with maximum contrast C = 1. The contrast vanishes for
B2

−∞ = N−∞, showing that no solution exist above a certain
threshold of total losses.

In analogy with the physics of nonlinear Bessel beams [17],
NABs can be viewed as Airy beams reshaped by nonlinear
absorption and the Kerr effect, the former being responsible
for the power flux from the weakly decaying tail toward the
intense lobes where nonlinear absorption occurs and the latter
of a nonlinear phase shift [18]. This is expressed by considering
the NAB as an unbalanced superposition of two stationary
Hankel beams, each carrying energy in the direction of, or
opposite to the main lobe:

A(y)e[iψ(y)] = 1

2

√−y

3

2∑
l=1

ale
(−1)l iπ/6H

(l)
1/3(|ρ|) (8)
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FIG. 1. (Color online) Nonlinear Airy wave forms for (a) a
pure Kerr focusing (green dotted line) and defocusing (red dashed
line) nonlinearity with no NLLs; (b) NLLs alone with K = 5 (red
dashed line) and Kerr + NLLs (blue dotted line). (c) Domain of
existence (shaded region) of the NAB solution in the case of water at
λ0 = 800 nm as a function of peak intensity and width of the linear
solution. The circles indicate the peak intensities at which numerical
simulations were performed (Fig. 2).

The power fluxes associated with each Hankel component
exactly compensate for the balanced superposition with a1 =
a2 = 1, which gives the stationary Airy beam with no net
power flux. Unbalancing creates a net flux associated with a
lowering of the contrast of the oscillating tail.

We numerically integrated Eqs. (6) and (5) from +∞ to
−∞ starting from the linear asymptotic solution as a boundary
condition in order to retrieve the intensity and phase profiles
of the NAB. Figure 1(a) shows the normalized intensity
profiles in the pure Kerr case, i.e., α = 0, for focusing (γ > 0)
and defocusing (γ < 0) Kerr nonlinearity, respectively. The
width of the main lobe is narrower or wider depending on
the sign of γ . Since the reference system in which we are
considering the solutions is always referred to the linear
case, the nonlinear solution preserves the same acceleration
although the relation between the width of the main lobe and
the peak acceleration no longer holds. In Fig. 1(b) for the
K = 5 case and γ = 0 (red dashed line), we show the effect
of multiphoton absorption and we observe a reduction of the
contrast in the decaying oscillations, which asymptotically
goes to C, and this reduction is greater when the total amount
of energy lost in absorption (proportional to N−∞) is greater
(data not shown). When we have both Kerr nonlinearity and
multiphoton absorption, we observe features characteristic of
both regimes (blue dotted line). As in the pure Kerr case, the
acceleration of linear Airy beams is preserved. We performed
a scan in the parameter space in order to derive the region of
existence of these stationary solutions.

Figure 1(c) shows this domain in the (I0,w0) coordi-
nates for water at λ0 = 800 nm (we considered n2 = 2.6 ×
10−16 cm2/W, n0 = 1.3286, K = 5, and β(K) = 8.3 ×
10−50 cm7/W4 [19]), where I0 is the maximum intensity of
the nonlinear profile and w0 is the width of the corresponding
linear solution, which represents the acceleration as a(w0) =
1/2k2

0w
3
0.

Nonlinear Airy beam evolution. A relevant question is
whether one is actually able to excite or experimentally
observe stationary NABs. The ideal beams described above
have infinite energy whereas experiments obviously resort
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FIG. 2. (Color online) Numerical results: propagation in water
with focal length f = 20 cm. Solid blue line, linear Airy profile;
dashed red line, nonlinear Airy profile; black dotted line, nonlinear
case with artificially increased NLLs. All profiles are shown in the
focal plane of lens f (z = 20 cm).

to finite-energy realizations that cannot guarantee perfect
stationarity. However, as in the linear case in which finite-
energy Airy beams still exhibit the main stationary features,
e.g., subdiffractive propagation of the main intensity peak,
over a limited distance [2], we may expect the nonlinear
Airy beam to emerge during propagation in the nonlinear
regime. The rationale behind this reasoning is also based
on the observation that stationary wave forms have been
shown to act as attractor states for the dynamical evolution
of laser beams and pulses in the nonlinear regime, e.g.,
dynamically evolving X waves during ultrashort laser pulse
filamentation [20,21], nonlinear unbalanced Bessel beams
during the evolution of high-intensity Bessel beams [17,22],
and the spatial Townes profile during the self-focusing of
intense Gaussian pulses [23].

We performed a series of numerical simulations, solving
Eq. (1) for the same material parameters as in Fig. 1 with an
input Airy beam defined as in the linear regime, for various
increasing input intensities. The Airy beam was generated
by applying a third-phase mask to a Gaussian beam (full
width at half maximum of 0.5 mm) followed by a 2 − f

linear propagation so as to obtain the Fourier transform in
the focal plane of the lens (focal length f = 20 cm). This
layout is shown at the top of Fig. 2. In Fig. 2 we show a
line-out of the nonlinear profile (dashed red line) obtained by
numerical simulations based on Eq. (1), at z = 20 cm from the
last focusing lens for I0 = 2 TW/cm2. The linear Airy profile
(solid blue line) is included for comparison. The contraction of
the main lobe and the different periodicity of the side lobes is
clearly evident, while the effect of NLLs (i.e., loss of contrast
in the side-lobe oscillations) is not observed. We therefore
performed an additional simulation (black dotted line) at the
same peak intensity with an increased nonlinear absorption
coefficient, β(K) = 8.3 × 10−45 cm7/W: the strong reduction
in the contrast of the Airy beam oscillations is now clear,
indicating the presence of an inward flux that is stabilizing the
energy loss in the main lobe.

Experiments. We performed two series of experiments
by launching one-dimensional Airy beams with increasing
input energy into two different nonlinear media: (1) a
2-cm-thick cuvette filled with water and (2) a 2.5-cm-thick

x (µm) x (µm)

FIG. 3. (Color online) Experimental results: (a) Experimental
layout. (b)–(e) Output Airy beam fluence profiles in logarithmic
scale.(b) Water at three input energies 25 nJ (solid line), 350 μJ
(dashed line), and 530 (dotted line) μJ and for an input Airy pulse
with a main lobe FWHM of 159 μm. (c) Water at same energies as
in (b) and a main lobe FWHM of 182 μm. (d) PMMA at three input
energies 25 nJ (solid line), 78 μJ (dashed line), and 196 (dotted line)
μJ and for an input Airy main lobe FWHM of 78 μm. (e) PMMA at
same energies as in (d) and a main lobe FWHM of 136 μm.

sample of the polymer polymethyl-methacrylate (PMMA).
The experimental setup is shown in Fig. 3(a): a third -order
spatial phase, together with a quadratic one corresponding to a
cylindrical Fourier lens, is impressed onto a Gaussian-shaped
beam delivered by an amplified Ti:sapphire laser with 35 fs
pulse duration, using a spatial light modulator (Hamamatsu
LCOS). The Airy-shaped beam then propagates through the
nonlinear sample and the beam profile at the exit surface is
imaged onto a CCD camera. Figure 3(b) shows the spatial
fluence profiles (in logarithmic scale) for three different input
energies 25 nJ (linear propagation), 350 μJ, and 530 μJ and for
an input phase profile such that the linear Airy main lobe full
width at half maximum (FWHM) is 159 μm. The main lobe
undergoes an evident contraction that increases with increasing
energy, in agreement with the prediction summarized in
Fig. 1(a) for the Kerr-dominated NAB. We then repeated the
measurements with an increased input phase such that the
Airy main lobe has a FWHM of 182 μm. Figure 3(c) shows
the results for the same energies as in Fig. 3(b). The reduced
density of the Airy peaks and the correspondingly lower spatial
intensity gradients imply that now both self-focusing effects
and the energy flux within the beam are weaker. We may
therefore expect the effects of NLLs to become more evident.
Indeed, while Kerr self-focusing effects are nearly absent, the
contrast in the secondary Airy lobes decreases in agreement
with the expected behavior of the “unbalanced” Airy beam,
as summarized in Fig. 1(b). These effects are even more
pronounced in measurements performed in PMMA which is
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expected to have higher NLLs due to the lower multiphoton
absorption photon number, K = 3. As for the case of water,
two different Airy widths were tested, 78 μm [Fig. 1(d)] and
159 μm [Fig. 1(e)], at three different energies 25 nJ, 78 μJ,
and 246 μJ, with similar dynamics as in water and with the
larger Airy peak leading to increased NLL effects. We observe
an increase of minimum intensity values by nearly an order
of magnitude with increasing input energy. Although we do
not have the same resolution and dynamic range as in the
numerics, the experiments clearly show the predicted trends
for the stationary NAB.

Conclusions. In conclusion, we have demonstrated the
existence of a freely accelerating solution in the nonlinear

regime that remains stationary even in the presence of
nonlinear losses. Clearly these results may be extended to
the original quantum context in which Airy wave packets
were proposed for the first time [1]. NABs could also find
practical applications in a similar fashion to stationary Bessel
beams where the beam stability above ablation intensities
has led to technical improvements in micromachining optical
materials [24] or soft tissue laser surgery by using them as
razor blades with a well-defined curvature. Stationarity is also
a critical issue in “analog Hawking” emission experiments
[25]: the nonlinear Airy beam may be used to reach huge
∼1021 m/s2 accelerations and thus investigate related photon
emission mechanisms [26].
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