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Optical Bloch-mode-induced quasi phase matching
of quadratic interactions

in one-dimensional photonic crystals
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We examine in detail the quasi-phase-matching process obtained as a stationary modulation of the fundamen-
tal field at the band edge of a finite one-dimensional photonic crystal. The treatment is carried out in terms
of the structure Bloch waves and fully explains the behavior of second-harmonic generation in the grating. An
integrated microstructured AlGaAs mesa waveguide is proposed that gives efficient second-harmonic and
difference-frequency generation in virtue of the combined presence of a periodic modulation of the
fundamental-field amplitude and of the photonic bandgap edge. © 2004 Optical Society of America
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1. INTRODUCTION
Optical frequency conversion has achieved much atten-
tion since the introduction of lasers as a means to shift
the wavelength to regions where amplifying media are
not easily available. Both second (x (2)) and third (x (3))
order material nonlinearities have been exploited in this
sense: The latter has a much smaller magnitude, but
four-wave mixing is not as limited by the phase mis-
match, Db 5 b(S iv i) 2 S ib(v i) [where b(v i) is the wave
vector at frequency v i] between interacting wavelengths.
Indeed, in order to achieve efficient x (2) interactions, it is
necessary to carefully phase match the interaction.
Many methods have been proposed for this purpose, e.g.,
birefringent phase matching,1,2 periodic inversion or can-
celation of the nonlinearity for so-called quasi phase
matching,3,4 form birefringence in multilayered
waveguides,5 and photonic bandgap (PBG) assisted phase
matching.6,7 Most notably, PBG materials that rely on a
periodic modification of the waveguide refractive index or
geometry have recently attracted much interest. En-
hancement of nonlinear mixing processes in a periodic
stratified medium was originally proposed by N. Bloem-
bergen et al.8 The role of the grating is that of providing
the missing Db in the nonlinear interaction: Following
the terminology proposed by M. Fejer et al.,9 we shall re-
fer to this process as linear quasi phase matching (linear
QPM), as only the linear susceptibility is modulated.
Linear QPM is independent of the position of the photonic
bandgaps, and, in order to be effective, the grating index
contrast must be of the same order of the material
dispersion,10 although Balakin et al.11 demonstrated a
strong enhancement of the conversion efficiency if the op-
timal linear QPM frequency coincides with a band edge.
Recent studies of nonlinear processes in one-dimensional
gratings12–14 have also been motivated by the possibility
of obtaining a simultaneously phase-matched and en-
hanced nonlinearity near the photonic bandgap edge.15

It has been shown16,17 that this enhancement has mainly
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two origins: a phase matching (dispersive PM) of the
nonlinear process by modification of the phase velocities
near the PBG edge6 and a PBG edge mode-density en-
hancement corresponding to a modification of the group
velocities. In x (2) materials, the combination of these
two effects may give rise to extremely efficient conversion
that may scale up to the sixth power with device length
L.18 Although this process is very appealing, it presents
serious technological difficulties if it is to be implemented
in an integrated optical waveguide. Here we shall deal
with semiconductor III–V materials (AlGaAs), which are
particularly interesting for their integration capabilities
and extremely high second-order nonlinear coefficient.
On the other hand, it has also been demonstrated that
dispersive PM requires very high index contrast in order
to compensate the large material dispersion at telecom
wavelengths (around 1550 nm).13 An example of such an
integrated grating is given by M. Midrio et al.,19 where
the high index contrast is obtained by alternating layers
of material with air. The main inconvenience with such
gratings is related to the tolerance to fabrication errors in
the periodicity or duty cycle,19 which become extremely
critical.

Starting from the general form of the Bloch modes in
the finite one-dimensional PBG crystal, we give a physical
interpretation of the band edge linear QPM interaction,
from here on referred to as Bloch-wave QPM (BW-QPM).
This allows a deeper understanding of the process, and,
with a practical application to an integrated waveguide
grating, we highlight some peculiar characteristics.

2. THEORY
Maxwell’s equations in the slowly varying envelope ap-
proximation, with no absorption and under the assump-
tion that the fundamental wave (FF) remains undepleted
(i.e., the fundamental wave Ev does not depend on z), lead
2004 Optical Society of America
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us, in the particular case of second-harmonic generation
(SHG), to the single equation for the second-harmonic
(SH) field

E2v~z ! 5 const E
0

L

f~z !x~2 !Ev
2 exp~ jDbz !dz, (1)

where f(z) is a generic periodic function that may be ex-
pressed as a Fourier series, i.e., f(z) 5 (n52`

` an
3 exp(2jnKz) with K 5 2p/L, where L is the multilayer
periodicity. L may be chosen so that there is a term in
the Fourier expansion with c̄K 5 Db, i.e., L
5 2 c̄lc , where c̄ is a constant and gives the QPM order
and lc is the coherence length, defined as p/Db. The total
(including both wave-vector and grating terms) phase
mismatch will then be zero, and we shall have QPM of or-
der c̄. In Fig. 1, we show the solution to Eq. (1) in the
case of a highly dispersive material, AlGaAs of 1550 nm.
The dot curve shows uSHu2 for f(z) 5 constant: In this
case, the maximum value of E2v(z) is reached at odd mul-
tiples of the coherence length. The solid curve is for
f(z) 5 1 1 cos(Kz) (also shown, rescaled, for reference as
a dashed curve) with K 5 p/lc (first-order QPM): as ex-
pected, we recover a steady growth of the SH. We note
that the effect of periodically modulating the material
nonlinearity or the FF field is completely equivalent.
Modulation of the material x (2) is typically obtained
by periodically poling ferroelectric crystal, whereas a
modulation of the FF field is more complicated. For
example, in a directional coupler, the field in the second
waveguide is given by20 E2(z) 5 @2jE1(0)exp(2jdz)
3 (k/Ak2 1 d 2)#sin(Ak2 1 d 2z), where k is the coupling
coefficient between the two waveguides, d 5 (b1
2 b2)/2, and b1,2 are the wave vectors of the fields E1,2 in
the first (input) and second waveguide. However, for rea-
sons that will become apparent further on, we are more
interested in another mechanism for periodically modu-
lating Ev , namely, the use of the Bloch mode in a periodic
dielectric structure.

If we consider a material with a periodic modulation of
the dielectric permittivity e with periodicity L, then

Fig. 1. Numerical solution to Eq. (1) for the non-phase-matched
case (dot curve) and for the QPM case (solid curve). The res-
caled modulating function is also shown for reference (dashed
curve).
Bloch’s theorem may be generalized and cites that an
electromagnetic wave propagating in this medium may be
written as a plane wave, exp( jbz) (where b is the Bloch
wave vector and may be easily calculated21), modulated
by a periodic function f(z) that has the same periodicity of
the medium. It is clear that if the Bloch function, defined
by the periodicity and amplitude of the refractive-index
modulation, is chosen correctly, it will be possible to
achieve a QPM nonlinear process obtained by the Bloch-
mode modulation of the pump Ev amplitude.

Let us consider a high-reflectivity, finite, one-
dimensional grating. On a transmission peak near the
band edge, the grating can be seen as a distributed reflec-
tor and, at the same time, as a distributed cavity. As in a
Fabry–Perot cavity, the total electric field can be decom-
posed into a propagating component and a stationary
part, which, in turn can be seen as the superposition of a
propagating wave and a counterpropagating wave of the
same amplitude. The only difference with the Fabry–
Perot case is that, due to the distributed nature of the re-
flectors, power is transferred gradually from the propa-
gating wave to the stationary wave. Furthermore, since
the natural modes of the structure are the Bloch modes,
the stationary wave Ev

staz must be a superposition of two
counterpropagating Bloch modes of the same amplitude.
Therefore

Ev
staz 5 Ev

1 1 Ev
2 5 f 1~z !exp~ jbz ! 1 f 2~z !exp~2jbz !,

(2)

where periodic functions may be expressed as Fourier se-
ries f 1(z) 5 (p52`

` ap exp(2jpKz), and, considering a
symmetric structure, f 2(z) 5 @ f1(z)#* . The Fourier co-
efficients are complex, so we may put ap 5 rp exp( jfp),
and Ev

staz becomes

Ev
staz 5 2 (

p52`

`

rp cos@~b 2 pK !z 1 fp#. (3)

We note that the distributed nature of the resonance re-
quires a slow-frequency envelope that can only come from
a beating of the terms of the series in Eq. (3). We may
combine any two elements p 5 n, m of the sum so that
we have

Ev
staz 5 4 cosF S b 2

n 1 m

2
K D z 1 cG

3 cosS m 2 n

2
Kz 1 j D , (4)

where c 5 cm 1 cn and j 5 fn 2 fm . In order for this
term to be effective, we must impose resonance conditions
on the arguments of the cosine functions. The first con-
dition is

S b 2
n 1 m

2
K DL 5 tp, (5)

where L is the total grating length and t is an integer.
Equation (5) requires that the corresponding beating
term in Eq. (4) is in resonance with the overall grating
structure and bears a close similarity to a Fabry–Perot
cavity resonance. Indeed, this resonance arises strictly
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from the finite length of the grating, and t gives the order
of the transmission resonance.

The second condition is given by the requirement that
the standing-wave modulation of the FF field must bal-
ance the phase mismatch Db of the SH interaction, i.e.,

m 2 n

2
K 5 c̄Db, (6)

where c̄ accounts for the possibility of higher-order QPM.
Solving Eqs. (5) and (6) for m and n, we find

m 5 F2nv

l
2 S t

L
2

c̄

lc
D G L

2
,

n 5 F2nv

l
2 S t

L
1

c̄

lc
D G L

2
, (7)

where l is the FF free-space wavelength. These two
equations allow us to design a grating for SHG that has a
Bloch-wave modulation of the FF field that compensates
for the material-dispersion-induced phase mismatch with
the FF wavelength simultaneously positioned at a band
edge. As an example, we may consider AlGaAs with lc
5 1.045 mm, nv 5 3.04, L 5 500 mm, and l
5 1.585 mm. If t 5 1 (l is positioned at the first trans-
mission next to a PBG) and c̄ 5 1 (first-order QPM), this
leads to m 5 5, n 5 3 if the grating periodicity is chosen
to be L0 5 2.09 mm and the order of the Bragg resonance,
counting both reflective (L is a multiple of l/4) and trans-
missive (L is a multiple of l/2) resonances, is n 1 m
5 8. We note that we also have solutions for m and n for
higher-order QPM. In particular, in the example given,
we will have all orders up to c̄ 5 4 corresponding to m
5 8, n 5 0: These higher-order contributions will be
much weaker than the lowest-order one. We also have a
degree of freedom in the choice of L, which may be taken
as an integer multiple of L0 . So with L 5 4.18 mm, BW-
QPM will occur at the n 1 m 5 16 band edge, and the
lowest-order QPM will be c̄ 5 2.

Note that, in our example, BW-QPM always requires
working on higher-order PBGs that consequently will
have a lower band-edge mode density if compared with
the fundamental PBG. This drawback may be partly re-
covered if the unit cell with period L of the grating is ob-
tained, not from two L/2 layers, but from a combination of
l/4 layers. In this case, the PBG at l will have the high-
est reflectivity and will therefore also exhibit the highest
mode-density enhancement.

3. DISCUSSION
In order to illustrate the BW-QPM process, we chose a
mesa waveguide in AlGaAs in which the one-dimensional
grating is obtained by lateral corrugation of the wave-
guide, as in Fig. 2. Vertically, the mesa is formed by a
lower-cladding layer with refractive index 3.204 and with
a thickness .4 mm so as to avoid coupling of the optical
mode into the underlying GaAs substrate (not indicated
in the figure). The core region is 900 nm thick with index
3.282 covered with upper cladding, 440 nm thick and in-
dex 3.256. The surrounding medium is air, and the grat-
ing is obtained by periodically modulating the waveguide
width from 500 to 700 nm. The AlGaAs crystal has (110)
orientation so that SH conversion occurs from the FF TE
mode to the SH TM mode. The relative effective indices
were calculated with a commercial mode solver22: nv

5 2.89, n2v 5 3.41, and the grating index contrast at the
FF and SH is dv 5 0.18 and d2v 5 0.03, respectively.
The unit cell is formed by six layers with thickness (1136–
154–1136–154–1136–462) nm. The coherence length in
this structure, as calculated from the waveguide grating
dispersion relation, is lc 5 1.045 mm, whereas L
5 4.18 mm, so, according to Eqs. (7), we can expect BW-
QPM at the 16th band edge near 1585 nm. Furthermore,
the dimensions of the single layers correspond very
closely to multiples of l/4 so as to optimize the reflectivity
and mode density at the 16th band edge. This can be
clearly seen in Fig. 3, where we plot the linear transmis-
sion (in dB) against the FF wavelength. The bandgaps
are numbered starting from the fundamental gap. In
practice, Eqs. (7) provide the initial working values for

Fig. 2. One-dimensional grating structure realized in a mesa
waveguide. All relevant dimensions and Al concentrations are
as indicated. The unit cell is formed by six layers with thick-
ness (1136–154–1136–154–1136–462) nm.

Fig. 3. FF transmission of the 111-unit cell grating. The order
of the PBG is indicated in the figure. The reflectivity (and thus
the mode density) of the 16th band edge near l 5 1585 nm has
been optimized by use of l/4 layers to construct the unit cell, as
discussed in the text.



Faccio et al. Vol. 21, No. 2 /February 2004 /J. Opt. Soc. Am. B 299
the grating dimensions. A change in the distribution of
the layers in the unit cell will cause a small change in the
coherence length, which in turn will affect L so that the
final structure must be fine tuned by a trial and error pro-
cedure through computer simulations. We emphasize
that the variation of effective index of the FF due to the
grating was evaluated around the band edge (1584.9 nm)
and was found to be Dnv 5 8 3 1023. This maximum
value is more than an order of magnitude smaller than
material dispersion and is too low to induce phase
matching13; thus we may exclude the possibility of phase
matching by band-edge modification of the effective index.
We simulated the linear and nonlinear response of this
grating using the transfer-matrix method described in de-
tail elsewhere,23,24 taking the AlGaAs nonlinearity
xAlGaAs

(2) 5 100 pm/V and neglecting pump depletion,
which, due to the limited conversion efficiency, proved to
be an acceptable approximation. Figure 4(a) shows the
linear transmission of the FF field for a grating obtained
from 111 unit cells (top graph) along with the SH gener-
ated in the forward (middle graph) and backward (bottom
graph) directions. The total grating is 463 mm long and
is sufficient with a beam area of 1 mm2 and 50-mW input

Fig. 4. (a) Top graph: linear transmission of the FF field near
the band edge. Middle and bottom graphs: SH efficiency in the
forward and backward directions, respectively, with 111 unit cells
and other parameters as indicated in the text. (b) FF (top
graph) and SH (bottom graph) fields inside the grating.
power to give 223-dB conversion efficiency (10%/W) at
the band-edge wavelength 1585.9 nm. In Fig. 4(b) we
show the total FF field distribution (top graph) and both
the forward and backward SH fields (bottom graph),
which clearly illustrates the Bloch-wave resonance in the
finite grating and the resulting enhanced mode density
for the FF field (the SH field is far from a band edge and
does not exhibit mode-density enhancement). To better
illustrate the PM mechanism in Fig. 5, we show an en-
largement of Fig. 4(b): The top graph shows the total FF
field; the Bloch-wave modulation has a periodicity of 4.18
mm. The bottom graph shows the forward-generated SH,
which shows local oscillations related to the coherence
length; i.e., the Bloch periodicity is 4 times lc , and we
may conclude that the BW-QPM is of second order, as ex-
pected. An interesting aspect of this PM technique is the
effect of doubling the structure length. At the first trans-
mission peak, we have t 5 1 in Eqs. (7); if we double L,
then, in order to maintain the equality, we must put t
5 2, i.e., efficient SHG will be observed at the second
transmission peak, as can be seen in Fig. 6(a). This may
be generalized to longer grating lengths: As L increases,
so does the order of the transmission peak at which BW-
QPM SHG occurs. Figure 6(b) shows the total squared
value of the FF field (top graph) at the second transmis-
sion peak. As expected, there are now two main power
peaks corresponding to the higher-order Bloch-wave reso-
nance. The forward and backward square-field ampli-
tudes are shown in the bottom graph: The average
growth rate with z is quadratic, as is appropriate for QPM
SHG and a maximum conversion efficiency of 217-dB
(with 50-mW input power) or 40%/W. However, as L, and
therefore t, increases, the FF field shifts further away
from the band edge, and the mode density will conse-
quently decrease. This results in a SH growth versus L,
which becomes nearly linear for large L. This is shown
in Fig. 7, where we plot the maximum SHG efficiency for
increasing grating lengths.

Finally, the same structure may also be used for
difference-frequency generation. In this process, a pho-

Fig. 5. Enlargement of Fig. 4(b) showing the local field distribu-
tions of the FF field (top graph) and SH field (bottom graph) for a
grating with 111 unit cells. The Bloch-wave modulation is
clearly visible in the FF field, whereas the oscillations in the SH
field are related to the coherence length.
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ton at frequency vs (signal) is converted by a QPM x (2)

interaction with a photon at frequency vp (pump) to a
photon at v i (idler). Figure 8 shows the calculated con-
version efficiency from the fixed input signal wavelength

Fig. 6. (a) Top graph: linear transmission of the FF field near
the band edge. Middle and bottom graphs: SH efficiency in the
forward and backward directions, respectively, with 222 unit
cells and other parameters as indicated in the text. (b) FF (top
graph) and SH (bottom graph) fields inside the grating.

Fig. 7. Maximum SH conversion efficiency in %/mW versus to-
tal device length. Each point corresponds to an increase in L of
463 mm, i.e., L 5 m 3 463 mm, and therefore to a shift of the FF
peak efficiency to the mth transmission peak from the PBG edge.
(1548.9 nm) to the idler for a pump wavelength that is
tuned from 750 nm to 850 nm. With 10-mW input pump
power and 1-mW input signal power, the 463-mm long
structure has 230-dB conversion efficiency with a 13-nm
bandwidth. Increasing the length increases the conver-
sion efficiency but also decreases the bandwidth. For ex-
ample, a 1.7-mm-long grating has 216-dB conversion and
a bandwidth of 3 nm.

4. CONCLUSION
In conclusion, we give a description of QPM obtained by
periodically modulating the amplitude of the FF field.
The modulation is obtained in a linear grating and may
be understood in terms of the formation of beating
standing-wave Bloch eigenfunctions. This allows an ac-
curate understanding of the linear and nonlinear optical
interactions in the multilayer structure, and we have de-
rived simple conditions that define the dimensions of the
grating unit cells and layers once the FF wavelength, the
coherence, and grating length are given. These condi-
tions impose that the grating compensates for the mate-
rial phase mismatch at a FF wavelength that is also at
PBG edge. The QPM process is usually inefficient so
that the enhancement arising from the large mode den-
sity at the band edge must be optimized by use of l/4 lay-
ers to construct the unit cell. We also note a peculiar be-
havior of BW-QPM, namely, the shift of the SH maximum
to higher-order FF transmission peaks as the grating
length is increased. On the basis of our discussion, we
propose an integrated mesa waveguide with a lateral geo-
metric modulation that exhibits efficient SHG and
difference-frequency generation. An advantage of using
BW-QPM is the lower index contrast required for the
grating with respect to ‘‘standard’’ dispersive PM in
PBGs. This is important because, although the SH
growth versus L is slower with respect to dispersive PM,
it allows the use of a wider combination of materials.

This research was partly funded by the European
project PICCO.

Fig. 8. Idler conversion efficiency versus idler wavelength from
the 111-unit cell structure by difference-frequency generation.
Signal input power is 1 mW, and the 10-mW pump beam is tuned
from 750 to 850 nm.
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